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ABSTRACT 
 

There is a major trend in engineering education to provide students with realistic hands-on learning experiences. This 
paper reports on the results of work done to develop standardized test instruments to use for student learning outcomes 
assessment in an experiential hands-on manufacturing engineering and technology environment. The specific 
outcomes targeted for assessment are those defined under the MILL (Manufacturing Integrated Learning Laboratory) 
Manufacturing Competency Model. In a unique feature aimed at experiential learning, the test instruments 
incorporate the use of a physical manipulative to evaluate attainment of particular hands-on skills. The resulting 
standardized tests have been subjected to extensive psychometric analysis. The results of the analysis indicate 
excellent structure of the test instruments. The test instruments have shown high levels of stability, internal consistency, 
and reliability. These tests can be used as instruments for outcomes assessment to help document attainment of 
targeted learning outcomes for program assessment, accreditation, and other assessment purposes. 
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INTRODUCTION 
 

here has been a focus in recent developments in engineering education on improving student learning 
by providing more hands-on learning experiences. With respect to manufacturing, the Society of 
Manufacturing Engineers Education and Research Community’s Curricula 2015 report examined the 

state of manufacturing education and industry, emerging issues, and opportunities for improvement (Mott & Hugh 
2011). It states that as manufacturing becomes more established as a discipline, it is necessary to work towards a 
strong yet flexible core curriculum and that there is a need for a consistent model that can be used to design and assess 
programs.  
 
In our previous work, we described how a core common curriculum was developed by five departments at four 
different institutions to provide experiential hands-on manufacturing education. The following major curriculum areas 
emerged: (1) drafting/design, (2) manufacturing process, (3) process engineering, and (4) CAD/CAM. The associated 
competencies that students are expected to master are shown in Table 1. This table summarizes what came to be known 
as the MILL Manufacturing Competency Model (MILL Model for short).  Further discussion of the MILL Model is 
found in Ssemakula, Liao, Ellis, Kim, and Sawilowsky (2009); Ssemakula et al. (2011a, 2011b). 

 
  

T 
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Table 1. Common Competencies and Curriculum Test Blueprint. 
Manufacturing Processes Process Engineering 

M1 Given a part design, select appropriate machining 
processes and tools to make the part P1 Plan and analyze part design for productivity 

M2 Determine the important operating parameters for each 
of these machines P2 Analyze and improve manufacturing processes 

M3 Describe selected manufacturing processes, including 
their capabilities and limitations P3 Analyze tolerance charting in part design 

M4 Identify and operate conventional lathe, drilling, and 
milling machines P4 Apply logical design of a manufacturing process plan 

M5 Communicate effectively using written and graphical 
modes P5 Perform manufacturing process planning of a given 

part 
M6 Work successfully as a member of a team P6 Communicate effectively in oral and written formats 

M7 Specify fit and tolerance of standardized and/or 
interchangeable mating parts P7 Select the optimal manufacturing equipment 

 
Drafting/ Design CAD/CAM 

D1 
Use a state-of-the-art CAD program to develop 
parametric solid model representations of parts and 
assemblies 

C1 Describe and identify geometric modeling in CAD 
domain 

D2 Visualize objects 3-dimensionally C2 Perform computer-aided numerical control 
programming 

D3 Create orthographic views of objects   
D4 Create 3D models using wireframe and solid modeling   
D5 Sketch objects freehand to communicate concepts    

D6 Create constraint-based modeling using a state-of-the-
art CAD program   

 
 
The competencies shown in Table 1 form the knowledge base or blueprint from which the standardized test 
instruments that are the subject of this paper were developed. A collaboration among diverse partners to develop a 
standardized test is likely to introduce novel issues in arriving at an agreement on matters that impact the psychometric 
priorities of the instrument. For example, consider evidence for content validity, “the degree that a test measures what 
it purports to measure” (Sawilowsky, 2000a, p. 155; see also Sawilowsky, 2000b). It may be obtained via a Venn 
diagram of the test’s blueprint of objectives with the following: outline of the curricular modules, subject matter 
experts’ analyses, school district curricula and objectives guides, standards set by blue-ribbon panels, and related 
resources. However, when there are multiple and diverse partners, there may be little opportunity for agreement on 
the choice of topics and certainly subtopics required to support claims of content validity. 
 
The purpose of this paper, therefore, is to explicate the approach that was used to develop a standardized test of the 
core manufacturing competencies detailed in the MILL Model. This collaborative effort included partners from five 
different departments at three universities and one community college around the United States, and an advisory board 
of industry representatives. The goal was to develop a content-valid standardized test instrument to help validate the 
attainment of core student learning outcomes in the manufacturing arena.  Among other things, the results from the 
test can be used to demonstrate that an educational program is addressing the competency gaps that were identified 
by industry (SME 2003); and meeting student outcomes established by accreditation agencies such as the 
Accreditation Board for Engineering and Technology (ABET 2016a, ABET 2016b).  
 

DEVELOPMENT OF TEST INSTRUMENTS 
 

Once the test blueprint in Table 1 above was finalized, specifications were developed to mark out the different levels 
of cognitive ability addressed (recall, application, problem solving), and to serve as prompts in developing individual 
test items to assess the various cognitive levels. To assess whether students were achieving the target outcomes under 
the MILL Model, a proprietary parallel form standardized test was developed using an experimental design 
methodology. The drafting/design, manufacturing processes, process engineering, and CAD/CAM knowledge areas 
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from Table 1 formed the test’s subscales. The multiple competencies contained within each subscale naturally formed 
the test blueprint.  
 
This particular test is unique in that it incorporates a hands-on manipulative which can be used to provide a direct 
assessment of student attainment of specific hands-on skills. This helps to maximize the applicability of the test to the 
all-important hands-on learning experiences that are so highly sought by industry as well as demanded by modern 
engineering education pedagogy. The manipulative was designed to encompass the same hands-on skills as those 
stipulated under the MILL Model. It provides a realistic manipulative to be referenced during the test itself, so as to 
tie in with the corresponding hands-on experiences. To make hands-on experiences explicitly relevant to the test, test 
questions frequently refer the examinee to inspect the artifact because the question is based directly on the artifact. 
Multiple copies of the artifact were fabricated and distributed to each partner institution to be made available to 
students during the testing.  
 
Two versions of a standardized test were developed (Forms A and B). The test length was initially set to be twice the 
number of items per target competency. A conference was organized where representatives from each partner school 
were trained in the use of the blueprint approach to test construction as described in Bridge, Musial, Roe, Frank, and 
Sawilowsky (2003). There were 33 test items written for Form A scale and 32 test items written for Form B scale. The 
items were sent to the advisory board to obtain validity evidence based on their expertise. The test content was also 
validated by academic and industry experts. The item pool was then administered to target students at all partner 
institutions. A sample test question (with possible answers) is shown in Figure 1. To maintain the academic integrity 
of the tests, we are including only one sample question to illustrate the nature of the test instruments. 
 
 

Figure 1. Sample Test Question 
 

 
 
 
After the tests were administered at the various consortia schools, extensive and rigorous psychometric analysis was 
carried out on the resulting student performance data as described below.  
 

PSYCHOMETRIC ANALYSIS OF TEST INSTRUMENTS 
 

An examination of the psychometric properties of the test items was initially undertaken by exploratory factor analysis 
(EFA) methods. Principal components extraction with varimax rotation was used with the number of factors fixed at 
four to identify the four factors of Manufacturing Processes, Process Engineering, Drafting/Design, and CAD/CAM 
which constitute the MILL Model. Test items with factor weights less than |.4| were suppressed, and the items were 
examined to ensure they did not load on more than one factor, or to ensure they did not fail to load on at least one 
factor. Then, an item deletion approach was undertaken wherein an item was retained only if its point-biseral 
correlation (a measure of the homogeneity of the item with the remainder of the scale) was approximately ≥ +.125. 
(Items were eliminated if the point-biserial was negative, or positive but approximately 0 < rPB < +.125.) The final 
result was two 20-item test instruments, Form A and Form B. 
 
  

Q. What is the proper sequence of G-codes in numerical control programming if the 
objective is to mill the outer profile of the plate in the figure below? 

Cutting direction 
End Mill 

Answers: 
a. G01 G02 G01 G03 
b. G01 G03 G01 G02 
c. G01 G03 G01 G03 
d. G02 G01 G03 G01 

 

Plate 
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Reliability 
 
“According to classical measurement theory, instrument reliability is the consistency that a test measures whatever it 
measures” (Sawilowsky, 2007, p. 516.). Two types of instrument reliability, parallel forms and internal consistency, 
were assessed for the test instruments developed. 
 
Parallel Forms describes the stability of scores over time. It was obtained by administering both Form A, and after a 
delay (in order to eliminate fatigue), Form B to the same students. It is distinguished from test-retest, where the same 
test is administered twice to the same students, in that it has the advantage of precluding the memory effect (i.e., 
relying on recollection of the answer obtained previously instead of skills and abilities). It is obtained by computing 
the Pearson product-moment coefficient of correlation on the scores of the two parallel forms. The parallel forms 
reliability, rPF, was .86 (with p = .006), indicating a fairly high level of stability of scores. 
 
Internal Consistency is a measure of the homogeneity of subject matter represented by the test items, where the test is 
randomly split into two parts and the Pearson correlation is computed on the scores for the two parts. This form of 
internal consistency is called split-halves, rSH, is dependent on the fashion in which the test is split. Cronbach’s α, an 
improvement on split halves, is the long-run average correlation obtained from all possible permutations of splitting 
the test into two parts. To achieve an unbiased estimate, a parallel model was assumed and also reported. Cronbach’s 
α for Form A was .80, and the unbiased parallel model rPM was .81. The standard error of measure (SEM) was 1.82. 
The items descriptors, level of difficulty, and other summary statistics are compiled in Table 2. 
 
 

Table 2. Form A Item Statistics 
Item # Subskill P σ σ2 

1 C1 .3214 .47125 0.22208 
3 D1 .7857 .41404 0.17143 
6 D2 .8929 .31209 0.09740 
8 D4 .9286 .25987 0.06753 
10 D6 .7500 .43693 0.19091 
11 M1 .8393 .37059 0.13734 
12 M1 .7321 .44685 0.19967 
13 M2 .4107 .49642 0.24643 
15 M3 .4107 .49642 0.24643 
16 M3 .6607 .47775 0.22825 
18 M4 .6964 .46396 0.21526 
19 M4 .5536 .50162 0.25162 
21 M5 .7321 .44685 0.19967 
22 M6 .5357 .50324 0.25325 
26 P1 .7500 .43693 0.19091 
27 P2 .2679 .44685 0.19967 
28 P2 .8036 .40089 0.16071 
29 P3 .2321 .42602 0.18149 
30 P4 .4107 .49642 0.24643 
32 P7 .5536 .50162 0.25162 

Mean  .613  0.198 
 
 
The column titled P in the above table is also known, in Classical Measurement Theory, as the item’s difficulty index 
(Sawilowsky, 2007, p. 517). P values close to 1 indicate the items are easy, whereas P values close to 0 indicate the 
items are hard. For example, item #29 above would be considered difficult, whereas item #8 is considered to be very 
easy. Ideally, the average P value in a standardized test should be P = .5. In this case, the mean P value for Form A is

 = .61, which is reasonably close to the desired middle point. 
 
The item-total statistics are compiled in Table 3. They predict the impact of further adjustment through item deletion 
on Cronbach’s α. It is clear that no further item deletions would result in materially increasing the reliability of the 
final Form A scale. 

X
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Table 3. Form A Item-Total statistics 

Item # Subskill Total Scale  if 
Item Deleted 

Scale σ2 if Item 
Deleted 

Corrected 
Item-Total r 

Cronbach’s α if 
Item Deleted 

1 C1 11.9464 14.779 .371 .789 
3 D1 11.4821 15.600 .176 .799 
6 D2 11.3750 15.475 .315 .792 
8 D4 11.3393 15.719 .271 .794 
10 D6 11.5179 15.018 .336 .791 
11 M1 11.4286 15.122 .377 .789 
12 M1 11.5357 15.235 .261 .795 
13 M2 11.8571 14.743 .356 .790 
15 M3 11.8571 14.088 .539 .777 
16 M3 11.6071 14.606 .414 .786 
18 M4 11.5714 14.504 .460 .783 
19 M4 11.7143 14.317 .468 .782 
21 M5 11.5357 14.653 .436 .785 
22 M6 11.7321 15.036 .271 .795 
26 P1 11.5179 14.691 .437 .785 
27 P2 12.0000 15.055 .315 .792 
28 P2 11.4643 15.453 .232 .796 
29 P3 12.0357 15.599 .168 .800 
30 P4 11.8571 14.488 .426 .785 
32 P7 11.7143 13.990 .561 .776 

 
 
Discrimination statistics via Classical Measurement Theory, the discrimination index, and the point-biserial 
correlation, are provided in Table 4. Discrimination is the ability of a test item to differentiate between those who 
know and either those who do not know or are unable to produce the correct answer. These statistics are further refined 
by grouping students into ability levels. Students scoring in the top 27½ % are placed in the high ability group, whereas 
students scoring in the bottom 27½ % are placed in the low ability group. Students in the high ability group should 
correctly answer an item with high a discriminatory ability, while students in the low ability group should not be able 
to answer that item correctly. When the item difficulty P = .5, the discrimination index D takes on values from -1 to 
+1. All negative values are interpreted as unacceptable. As D increases from 0 to +1 the discrimination, which is 
desirable, increases. Note, however, that as the item difficulty rises or lowers from P=.5, the minimum and maximum 
values for D shrink, and their interpretation is dependent on the values of P. Hence, the point-biserial correlation is 
also given as an aid to interpreting the item discrimination. An inspection of Table 4 below indicates strong 
discriminatory ability for all items.  

 
  

X
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Table 4. Form A Item Difficulty and Discrimination Statistics 

Item # Subskill Item Difficulty P Discrimination 
Index D Point-Biserial Endorser 

Low Ability High Ability 
1 C1 .3214 .45 .45 .10 .55 
3 D1 .7857 .30 .30 .55 .85 
6 D2 .8929 .25 .38 .75 1.00 
8 D4 .9286 .15 .32 .85 1.00 
10 D6 .7500 .40 .43 .50 .90 
11 M1 .8393 .40 .45 .60 1.00 
12 M1 .7321 .45 .38 .50 .95 
13 M2 .4107 .46 .46 .25 .70 
15 M3 .4107 .70 .62 .15 .85 
16 M3 .6607 .55 .51 .45 1.00 
18 M4 .6964 .50 .49 .45 .95 
19 M4 .5536 .65 .56 .25 .90 
21 M5 .7321 .55 .52 .40 .95 
22 M6 .5357 .45 .41 .30 .75 
26 P1 .7500 .50 .51 .45 .95 
27 P2 .2679 .40 .41 .15 .55 
28 P2 .8036 .30 .33 .65 .95 
29 P3 .2321 .20 .25 .25 .45 
30 P4 .4107 .70 .52 .15 .85 
32 P7 .5536 .65 .62 .20 .85 

 
 
The final Form A total scale statistics are compiled in Table 5 below. 
 
 

Table 5. Final Form A Total Scale Statistics, rPM = .81 
N Total Scale  σ2 σ SEM Mean Biserial 
20 12.288 15.968 3.996 1.82 .604 

 
 
The same process used for obtaining psychometric results for Form A was applied to Form B. Cronbach’s α was .64, 
and under the parallel model, the unbiased reliability estimate rPM was .65. The SEM = 1.906. The remaining statistics 
are compiled in Tables 6 - 9 below. It is also apparent in Table 7 that no further item deletion would materially improve 
the reliability of Form B, and there was adequate discriminatory power between high and low ability groups. 

 
  

X
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Table 6. MILL Form B Item Statistics 
Item # Competency P σ σ2 

1 C1 .4795 .50303 0.25304 
4 D1 .3562 .48218 0.23250 
6 D2 .7260 .44908 0.20167 
7 D3 .4110 .49541 0.24543 
10 D5 .8082 .39643 0.15716 
12 M1 .1507 .36022 0.12976 
13 M1 .6301 .48611 0.23630 
14 M2 .4795 .50303 0.25304 
18 M4 .7808 .41655 0.17351 
19 M4 .4521 .50114 0.25114 
20 M5 .5890 .49541 0.24543 
21 M6 .6849 .46776 0.21880 
22 M6 .7671 .42559 0.18113 
24 P1 .7945 .40685 0.16553 
25 P1 .2055 .40685 0.16553 
27 P2 .8493 .36022 0.12976 
28 P3 .2055 .40685 0.16553 
30 P5 .7671 .42559 0.18113 
31 P7 .3288 .47302 0.22375 
32 P7 .2740 .44908 0.20167 

Mean  0.537  0.201 
 
 

Table 7. MILL Form B Item-Total Statistics 

Item Competency Total Scale  if 
Item Deleted 

Scale σ2 if Item 
Deleted 

Corrected 
Item-Total r 

Cronbach’s α if 
Item Deleted 

1 C1 10.2603 9.445 .197 .635 
4 D1 10.3836 9.518 .187 .636 
6 D2 10.0137 9.208 .329 .619 
7 D3 10.3288 8.696 .467 .598 
10 D5 9.9315 9.815 .135 .641 
12 M1 10.5890 9.857 .141 .640 
13 M1 10.1096 9.904 .054 .653 
14 M2 10.2603 9.251 .262 .627 
18 M4 9.9589 9.512 .242 .630 
19 M4 10.2877 8.736 .445 .601 
20 M5 10.1507 9.769 .094 .649 
21 M6 10.0548 8.608 .539 .590 
22 M6 9.9726 9.694 .163 .638 
24 P1 9.9452 9.803 .133 .641 
25 P1 10.5342 9.808 .131 .642 
27 P2 9.8904 9.432 .336 .621 
28 P3 10.5342 9.863 .109 .644 
30 P5 9.9726 9.527 .228 .631 
31 P7 10.4110 9.662 .143 .642 
32 P7 10.4658 9.419 .249 .629 

 
 
  

X
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Table 8. MILL Form B Item Difficulty and Discrimination Statistics. 

Item Competency Item Difficulty P Discrimination Index D Point-Biserial Endorser 
Low Ability High Ability 

1 C1 .4795 .50 .38 .17 .67 
4 D1 .3562 .42 .35 .17 .58 
6 D2 .7260 .54 .52 .42 .96 
7 D3 .4110 .71 .55 .08 .79 
10 D5 .8082 .29 .38 .63 .92 
12 M1 .1507 .25 .30 .08 .33 
13 M1 .6301 .42 .31 .42 .83 
14 M2 .4795 .54 .43 .21 .75 
18 M4 .7808 .42 .46 .54 .96 
19 M4 .4521 .71 .56 .13 .83 
20 M5 .5890 .25 .34 .42 .67 
21 M6 .6849 .71 .65 .25 .96 
22 M6 .7671 .29 .42 .50 .79 
24 P1 .7945 .29 .39 .54 .83 
25 P1 .2055 .21 .29 .08 .29 
27 P2 .8493 .38 .52 .54 .92 
28 P3 .2055 .33 .28 .08 .42 
30 P5 .7671 .38 .43 .50 .88 
31 P7 .3288 .42 .33 .13 .54 
32 P7 .2740 .50 .39 .04 .54 

 
 

Table 9. Final Form B Total Scale Statistics, rPM = .65 
N Total Scale  σ2 σ SEM Mean Biserial 
20 10.476 14.347 3.788 1.906 .548 

 
 
In standardized testing, raw scores are typically transformed to T scores, which are of the form T = 10Z + 50. This 
can easily be obtained in SPSS via menu choices of Transform | Rank Cases | Rank Types | Normal Scores | Blom. 
The resulting Z scores are then converted to T scores with the SPSS compute command (e.g., if the Z variable is 
named NVAR1, use Compute T = 10*NVAR1+50.).  
 
This yields a standard scale of 20 to 80, with a mean of 50 and standard deviation of 10. For comparison purposes, the 
relevant scores on Form A are presented in Table 10. This table readily permits converting a raw score into T score, 
and percentile equivalents. (Note that not all raw scores were present in the original data (e.g., X = 1, 2, 4). 
Interpolation, extrapolation, or spline fitting techniques can be used to obtain the corresponding standardized scores 
for those data points.). 
 
The results of the all the analyses demonstrate that the test instruments that were developed are internally consistent, 
and psychometrically reliable and valid. 
 
 
  

X
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Table 10. Standardized Scores for Form A 

Raw Score Raw Score 
20 T Score Percentile 

3 0.15 27.13 1.11 
5 0.25 31.03 2.89 
7 0.35 37.18 10.00 
8 0.40 40.85 18.00 
9 0.45 42.72 23.33 
10 0.50 44.63 29.56 
11 0.55 47.52 40.22 
12 0.60 50.67 52.67 
13 0.65 52.25 58.89 
14 0.70 53.41 63.33 
15 0.75 55.37 70.44 
16 0.80 57.57 77.56 
17 0.85 59.50 82.89 
18 0.90 62.82 90.00 
19 0.95 68.97 97.11 

 
 

CONCLUSION 
 

This work shows that standardized tests can be used for outcomes assessment and authentication of the attainment of 
target hands-on competencies. The paper demonstrates that the test instruments that have been developed are robust, 
and psychometrically valid. For Form A, the instrument’s average difficulty index P of 0.61 is close to the middle 
point of 0.5 which is ideal for standardized tests; the parallel forms reliability, rPF, was .86, indicating a high level of 
stability of test scores; Cronbach’s α was .80, while the unbiased parallel model rPM was .81; indicating a high level 
of internal consistency. Form B has similar characteristics. The use of well-constructed standardized tests can 
conveniently document attainment of targeted learning outcomes for accreditation and other assessment purposes. 
This is an innovative use of standardized testing for programmatic evaluation. The incorporation of a physical 
manipulative to evaluate attainment of hands-on engineering competencies in a psychometrically validated 
standardized test is a unique pioneering contribution.  
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